From battery waste to electrochemical sensor

Multiplex detection of antioxidants / food additives / preservatives in food samples is possible using our newly developed graphite-based nanocomposite electrochemical sensor from used alkaline battery. The chemical sensor not only leads to shorter analysis time but also is a greener chemistry innovation.

A small AA battery can do the important job of powering up our remote control, mini toys and alarm clock, but after reaching its life spent, there is environmental issue that we need to solve. A typical zinc battery is composed of a zinc body, manganese powder, paper, starch and a black rod that make the battery works. Most of the parts are recyclable, but not the black rod (which scientists referred as the “graphite rod”). This material possesses good electrical conductivity property and can actually be reused for the development of a chemical sensor.

The graphite rod that was extracted out from the used battery can be cut into various shapes, either in rods, buttons, or thin sheets. Besides, it can also be fabricated into small chip devices and attached onto human skin or as a strip for the detection of chemical substances in food. Food additives (chemicals) such as anti-oxidants or preservatives could be piece of interesting information, whereby most people are concern of and would like to know their actual amount before consuming.

The possibility of miniaturizing a laboratory into graphite chip or strip to give us the instant information regarding the dosage intake of anti-oxidants or preservatives in our daily meals is achievable through a simple and economical graphite rod conversion steps. In contrast to the conventional laboratory tests that could take up a day for chemical analysis, a portable, affordable and accurate small analytical device is more preferred. The development of chemical sensors has begun a decade ago, as its potential use is promising due to high demand. Alas, the cost for such development using expensive sensor materials is not affordable.

To overcome this challenge, our research group has found an exciting solution by looking into reused battery waste. We have successfully fabricated a number of graphite nanocomposite electrochemical sensors by surface modification with nanomaterials, which significantly improved the materials’ chemical and physical properties that fit to its usage as a chemical sensor. We have demonstrated the practical use of the developed graphite-based electrochemical sensor for the quantitative detection of Myricetin (natural anti-oxidant) and multiplex detection of other preservatives (synthetic organic molecules) in different forms of actual food samples. The analysis results obtained was found well correlated to the conventional laboratory test results using HPLC. More importantly, the test conducted using our developed sensor method is relatively faster whereby results could be read in less than 5 minutes. In addition, the recycled graphite rod used is an inert material. Hence, it is safe to be used and will not cause any harmful effect to the end users. This is another added value to the newly developed alternative analytical approach.

Source: University of Malaya.

read more
OnAugust 19, 2017, posted in: Latest News by

Reduced oxygen nanocrystalline materials show improved performance

Researchers at the University of Connecticut have found that reducing oxygen in some nanocrystalline materials may improve their strength and durability at elevated temperatures, a promising enhancement that could lead to better biosensors, faster jet engines, and greater capacity semiconductors.

read more
OnAugust 4, 2017, posted in: Latest News by

Nanomaterial helps store solar energy: Efficiently and inexpensively

Efficient storage technologies are necessary if solar and wind energy is to help satisfy increased energy demands. One important approach is storage in the form of hydrogen extracted from water using solar or wind energy. This process takes place in a so-called electrolyser. Thanks to a new material developed by researchers at the Paul Scherrer Institute PSI and Empa, these devices are likely to become cheaper and more efficient in the future. The material in question works as a catalyst accelerating the splitting of water molecules: the first step in the production of hydrogen. Researchers also showed that this new material can be reliably produced in large quantities and demonstrated its performance capability within a technical electrolysis cell — the main component of an electrolyser. The results of their research have been published in the current edition of the scientific journal Nature Materials.

read more
OnJuly 26, 2017, posted in: Latest News by

6 Important Boron Powder Uses & Finding The Right Supplier

Finding a reliable boron powder supplier nowadays is not easy. However, at Tritrust International, we take pride in providing high quality and pure boron powder that is in line with all the highest standards in the industry.

read more
OnJuly 22, 2017, posted in: Latest News by

Fixation of powder catalysts on electrodes

Chemists at Ruhr-Universität Bochum have developed a new method to tightly fix catalyst powders on electrode surfaces. Currently, the high physical stress induced on catalyst films by gas evolving reactions hampers the application of powder based catalysts. The developed technique is potentially interesting for hydrogen production by water electrolysis. A team involving Dr Corina Andronescu, Stefan Barwe and Prof Dr Wolfgang Schuhmann from the Center for Electrochemical Sciences reports on this in the international edition of Angewandte Chemie.

read more
OnJuly 12, 2017, posted in: Latest News by